汉中西门子模块代理商
一台西门子6RA28控制的调速系统,原本运行正常,启动,电机不转且过一会儿报F16(注F16:传动系统停止转动)。
处理过程:
1、检查给定信号和使能信号均正常
2、将机械挂空档,启动系统,发现电枢电流比正常时高,电枢电压升不去(当给定达到 50%,电枢电压仍只能升到10%)
3、考虑到昨天运行时电机无异常,分析励磁可能有问题,检测电机上的励磁电压为0V,检查励磁整流桥的输出为180VDC
4、后查出该励磁电压经过一继电器后再送到电机,继电器触点接触不良导至电机上无励磁电压。
5、更换继电器的触点后,恢复正常。
结论:电机空载时能慢慢转是由于剩磁,由于磁场太弱,才导致电枢电流过大故报F16。
工作小时累计是工程机械设备一个必备的功能。一方面它是企业与客户之间履行保修条款的重要的数字证据;另一方面也是用户施工结算的有效工作数据。传统的小时计大都是电磁机械式的,也有用液晶式的。随着科学技术的不断发展,plc(可编程序控制器)在工程机械设备上被广泛应用。三一重工股份有限公司在所有的产品中全部使用了siemens公司的S7-200PLC,使产品的可靠性、控制精度、智能化程度、扩展性都有了很大的提高。S7-200功能强大、资源丰富,用它来实现工作小时累计是可行的,传统的小时计可以省掉。
硬件组成
在现有的S7-200PLC电气系统中,不需要增加任何资源。在外部计时条件满足的情况下,CPU开始计时,计时数据通过PPI电缆传到人机界面显示。
软件设计
计时器:利用系统的特殊寄存器标志位SM0.5作为计时脉冲,接通一次(或断开一次)为1秒,用计数器累计时间,满60向前进位。
时间累计:实时的小时计是前一次的累计时间加本次的工作时间。H=h0+h1。
时间存储:用存储的方式存储时间数据到EEPROM存储器。
存储周期:存储周期长,EEPROM存储器使用的时间长,但计时精度低;存储周期短,计时精度高,但EEPROM存储器使用的时间短。这是一个矛盾的统一,设计时要根据系统的实际情况确定合适的存储周期,一般设计为3-5分钟。进行一次存储的操作,扫描时间会增加15-20ms。
小时计编辑功能。考虑到CPU有可能损坏的原因,更换CPU后小时计的数据会清零,小时计要有编辑的功能才更完善,当更换CPU后,通过界面可以把以前的工作数据输入到系统并存储,在这项操作时,为了使编辑的数据能够成功存储到存储区,必须在数据编辑完后,让CPU再运行一个大于存储周期的时间。当然,为了使工作数据的严谨性,小时计的编辑一定要密码进入。
存储地址更换:为了小时计的实时性和准确性,存储周期不能设计得太长,一般设计为3-5分钟。EEPROM存储器操作的安全次数为10万次,那么一个EEPROM存储器安全计时时间为100000×3/60=5000小时,一般机器的工作寿命是大于这个时间。解决这个问题的办法是在计时次数超过100000次时,更换存储地址。为了存储地址更换的方便,小时计的寻址方式采用间接寻址。
存储次数存储。为了小时计存储地址更换的需要,存储次数也要与小时计一样进行存储,并到100000次后更换地址。
地址更换的次数存储。为了小时计存储地址更换的需要,地址更换的次数也要与小时计一样进行存储,由于次数不多,不要更换地址。
程序流程简图
误差分析
小计时产生误差的原因有两方面,一个是计时误差,另一个是存储误差。
计时误差:本小时计的计时器是用系统特殊寄存器标志位SM0.5,它的状态变化周期是500ms,如果程序运行时捕捉不到状态的变化就产生误差。通过长期的监控实验,这个计时误差很小,1小时的误差不到1秒,可以忽略不计。
存储误差:机器在关机时,后一次存储还没来得及执行,产生存储误差。这个误差是一个负差,计时时间比实际的工作时间表小。每次关机的大误差是一个存储周期的时间3分钟。
以西门子SIMATIC S7—300PLC为核心的交流伺服系统代替原来以单片机为核心的直流伺服系统。并介绍了该系统的控制对象和控制任务,着重论述系统的体系结构、软硬件设计方案及实施方法。
关键词:PLC;交流伺服;直流伺服
0 引言
以前的伺服驱动系统多以直流系统为主,这是因为直流电机调速比较方便,本身的机械特性较硬,但直流电机由于有电刷换向,不适用于防爆场合,且结构复杂,维修不便。近年来由于电子技术飞速发展,交流调速技术日趋成熟,其调速性能可与直流系统相媲美,并正逐步取代直流电机调速。
我公司的原系统为CANN0N公司独立研制,以STD总线、Z80CPU为核心的单片机组成的直流伺服控制系统。该系统抗干扰能力差,软硬件资料不详,维修困难, 且备件价格贵, 采购周期长,经常造成停机。我们采用西门子S7—300PLC及位控模块FM357、SIM0DRIVE611A伺服驱动模块、1FK6伺服电机构成的数控系统对原系统进行了改造。
1 系统组成和工艺流程
1.1系统组成
系统组成框图如图1。
由图可知, 机械手控制系统是整个汽车仪表板生产线的核心, 它主要完成高精度的定位控制、与上位机通讯、数据采集、故障报警,以及控制发泡机高压循环及浇注时间, 接收来自转盘线的速度信号以适应转盘不同运行方式。高压发泡机系统主要完成ISO (异氰酸酯)和POL(聚醚多元醇)2种发泡料的流量、压力调节及原料循环控制。转盘控制系统主要完成转盘速度调节及模具开合控制。
机械手控制系统是此次改造的重点,该系统的主要构成如图2。
硬件配置如下:
(1)上位机采用研祥EWS.843P一体化工控机,体积小巧,操作方便,主要完成参数设定,故障显示等。(2)以西门子S7.300PLC为核心,CPU模块为CPU316-2DP,主要具有与上位机通讯、处理I/O模块、控制计数器模块、位置控制模块的功能。(3)输入模块为32点的SM32l,输出模块为l6点的SM322主要完成数字量的I/O控制。(4)FM357位置控制模块主要完成高精度的定位控制。(5)FM350计数模块主要采集来自转盘的光电码盘信号,以便完成与转盘的协调控制。(6)SIMODRIVE6l1A伺服驱动模块主要接受FM357的控制信号,为伺服电机提供动力。(7)1FK6交流伺服电机为执行电机。
1.2 系统工艺流程
系统工艺流程如图3。
2 系统软件构成
2.1系统的动作时序
系统的动作时序图如图4。
2.2 程序框图及系统软件
系统上位机监控软件采用西门子公司WINCCV5.0软件, 运用该软件设计显示浇注轨迹及示教参数输入等, 中文人机界面,操作方便。
下位机PLC程序采用西门子公司STEP7 V5.1软件,实现编程监控。程序框图如图5。
3 结束语
由于采用西门子S7—300PLC为核心的交流伺服系统代替原来的以单片机为核心的直流伺服系统,大大提高了控制可靠性。改造后的系统能完全满足与发泡机、转盘的协调控制,符合注模工艺要求,系统, 操作方便, 经济效益显著